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Energy Consumption Optimization for UAV Base
Stations with Wind Compensation
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Abstract—In this letter, an energy-efficient algorithm for posi-
tioning of unmanned aerial vehicle-based base stations (UAV-BSs)
is presented. The objective is to reduce the propulsion power con-
sumption of UAV-BSs while not compromising the communication
capacity of user equipments (UEs). As a significant step beyond
state-of-the-art, we consider an effect of wind. To this end, we
develop a new model of a propulsion energy consumption for the
UAV-BSs reflecting an impact of wind. Furthermore, we propose
a novel algorithm based on an ensemble learning optimizing the
3D trajectory of UAV-BSs over time in realistic environment with
wind to reduce the propulsion energy consumption. The results
show that the proposed approach reduces the propulsion energy
consumption of UAV-BSs by up to 47% with only a negligible
degradation in the UEs capacity compared to state-of-the-art
works.

Index Terms—UAV base station, energy consumption, wind,
modeling, ensemble learning, machine learning

I. INTRODUCTION

The base stations mounted on unmanned aerial vehicles
(UAV-BSs) represent a promising solutions offering a con-
nectivity to user equipments (UEs) during emergency or
temporary peak traffic conditions. The major limitation related
to a deployment of the UAV-BS is the battery capacity and,
consequently, operational time. The available battery capacity
is shared by communication (transmission power), and flying
(propulsion power).

Solutions targeting to reduce the transmission power of
UAV-BSs typically aim to determine positions of the UAV-
BSs. For example, in [1], the authors propose the optimal
UAV-BSs positioning based on the circle placement problem
to maximize the number of covered UEs. Furthermore, suc-
cessive convex approximation for the UAV-BS deployment
considering different transmission power allocated to the UEs
is adopted in [2]. Downlink power control for a fleet of
UAV-BSs is considered in [3]. In practical deployment of the
rotary-wing UAV-BSs, the transmission power consumption
is few orders of magnitude lower than the propulsion power
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consumption [4]. Hence, the transmission power is commonly
neglected and the propulsion power optimization is a key
challenge.

The propulsion power optimization is addressed, e.g., in [5],
[6], where a closed form solution for the UAV-BS trajectory is
derived. Then, in [7], the energy consumption and trajectory
design, considering the UAV’s dynamics and UAV’s turning
angles, are optimized. In [8], the authors adopt multi-agent
reinforcement learning to solve a multi-criteria optimization
problem involving the propulsion power reduction. Finally,
joint optimization of the UAV trajectory and beamforming
under a stochastic wind uncertainty is delivered in [9]. Never-
theless, up to our best knowledge, there is no work that would
take advantage of the wind flow distribution on the UAV-
BS trajectory design and corresponding effects on the UAV-
BS’s propulsion energy. Hence, in this paper, we minimize
the propulsion energy consumption of the UAV-BSs serving
stationary/slowly moving UEs while taking the efect of wind
on the energy consumption of the UAV-BS into account.

The major contributions of our work are summarized as
follows. First, we propose the UAV-BS energy consumption
model in the presence of wind considering: i) the wind speed
and wind direction, ii) the UAV-BS physical configuration,
and iii) instantaneous UAV-BS velocity. Second, we predict
the sub-optimal trajectory, defined by the circle center, al-
titude, and flight radius, minimizing the propulsion energy
consumption and leveraging the wind via ensemble learning.
As shown in [5], hovering with (close to) zero speed results
in a significant propulsion energy consumption. Hence, the
circular trajectory is commonly considered due to complexity
and practical limitations on maneuvering of the UAVs, see, e.g.
[5], [10]. Last, we demonstrate a significant propulsion energy
saving reached by our proposed algorithm at the cost of only a
negligible capacity degradation compared to the state-of-the-
art algorithm maximizing the capacity.

II. SYSTEM MODEL

In this section, we introduce a generic model of the system,
communication model, and wind flow model.

A. Generic model of the system and environment

We consider 3D urban area A ⊂ R3 with buildings. The
buildings occupy an area defined by coordinates A′. Further-
more, N UEs are deployed at locations U = {u1,u2, ...,uN},
where un = [xn, yn, zn] ∈ Ao,∀n ∈ ⟨1, N⟩ and
Ao = A−A′ represents the area, where the UEs and the
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UAV-BSs can move. There are also M static base stations
(SBSs) located on the rooftops of the buildings at coordi-
nates S = {s1, s2, ..., sM}, where sm = [xm, ym, zm] ∈
A′,∀m ∈ ⟨1,M⟩. Moreover, K UAV-BSs relaying data
from the SBSs to the UEs are also deployed in the area at
coordinates D(t) = {d1(t),d2(t), ...,dK(t)}, where dk(t) =
[xk(t), yk(t), zk(t)] ∈ Ao,∀k ∈ ⟨1,K⟩ at the time t.

Realistic UAV-BSs are limited in maneuvering and their
movement should be smooth in terms of direction changes to
avoid a high energy consumption [5]. Therefore, we design the
circular trajectory, which approximates the optimal trajectory
sufficiently with only a minor impact on the performance
as demonstrated in [11]. Moreover, a minor deviation in
the position of UAV-BSs with respect to an optimal generic
shape of the trajectory has only a marginal impact on the
capacity of UEs [12]. We consider the circular trajectory
with radii r = [r1, r2, ...rK ] at the circle centers F =
[f1, f2, . . . , fK ] ∈ RK×3, where fk = [fk,x, fk,y, fk,z]. The
position of the k-th UAV-BS at the time t is, then, defined as
dk(t) = [fk,x − rk ∗ cosα(t), fk,y − rk ∗ sinα(t), fk,z], where
α(t) is the relative angle of the UAV-BS to the x-axis.

B. Communication models

We consider orthogonal downlink transmission to the UEs.
The capacity of the access channel (superscript a) between the
k-th UAV-BS and the associated n-th UE is expressed as

Ca
k,n = Bn log2

(
1 +

PTx
k,ng

a
k,nθ

a
k,n

Bnσ2 + I

)
, (1)

where Bn is bandwidth associated to n-th UE. The available
bandwidth of k-th UAV-BS is distributed equally among its
associated UEs. The parameter PTx

k,n is the transmission power
of the k-th UAV-BS associated to the n-th UE, gak,n represents
the access channel gain between the k-th UAV-BS and the n-
th UE, θak,n denotes the fading, σ2 represents the noise power
density, and I is the interference from neighboring cells.

Analogously, the capacity of the backhaul channel (super-
script b) between the m-th SBS and the k-th UAV-BS required
for transmission of data of the n-th UE is defined as

Cb
m,k = Bn log2

(
1 +

PTx
m gbm,kθ

b
m,k

Bnσ2 + I

)
, (2)

where PTx
m is the transmission power of the m-th SBS, gbm,k is

the backhaul channel gain between the m-th SBS and the k-th
UAV-BS. Since the bandwidth allocation does not affect the
UAV-BS’s propulsion energy consumption, we assume equal
Bn allocated for all UEs served by the same UAV-BS.

For the UAV-BSs’ communication, half-duplex decode-and-
forward transmission is adopted. Hence, the capacity of the
channel between the m-th SBS and the n-th UE via the k-th
UAV-BS is determined as

Cm,k,n = min(T b
nC

b
m,k, (1− T b

n )C
a
k,n), (3)

where T b
n ∈ [0, 1] is the normalized time scheduled for the

n-th UE transmission over the backhaul, and (1− T b
n ) is the

normalized time for the access channel transmission. To avoid

a bottleneck on either of these channels, for the k-th UAV
forwarding data from the m-th SBS, we assume [13]

N∑
n=1

T b
nC

b
m,k =

N∑
n=1

(1− T b
n )C

a
k,n. (4)

C. Wind flow model
We model the dynamic effects of the wind via a generally

recognized k-ε model based on the Reynolds Averaged Navier-
Stokes (RANS) equations [14]. The k-ε model considers the
turbulent wind flow, which is present in an urban environment
with multiple obstacles in the wind path and uses time-
averaged equations of motion for wind. In practice, the model
of the environment is described through the finite volume
method (FVM) using a mesh, which represents a geometry
of the environment. The accuracy of the model is determined
via a sensitivity of the mesh and a number of iterations [15].
The mesh should be sensitive enough to capture the geometry
of the model sufficiently. However, too sensitive mesh leads
to a high computational complexity. The number of iterations
determines how many times the model runs until convergence
to a correct prediction of wind. The mesh is created either
manually or by a tool, e.g., based on UAV scanning the
selected area. The mesh is then projected into a virtual wind
tunnel and simultaneously, an inlet and an outlet, representing
a side from which the wind flows inside and outside the
tunnel, are selected. The wind velocity on inlet I⃗ = [ix, iy, iz],
and turbulent intensity and viscosity are measured at a given
reference point (RP), e.g., a weather station on a building, and
inserted to the model.

The k-ε model provides an information about the wind
velocity w⃗a = [wx, wy, wz] for each discrete position a ∈ Ao.
Time evolution of the wind velocity vectors is expressed
as the time evolution of mean velocity vector field (flow
velocity) from the left side of the convective form of the
RANS equations, as defined in [14]. The length of UAV-BS
operational time (∼ minutes) is sufficiently large compared to
the time-scale of turbulence in the wind flow (∼ milliseconds).
Hence, we can take an advantage of the wind-flow averaged
values from RANS for the design of the UAV-BS trajectory
instead of the instantaneous wind values, which are affected
by difficult to estimate small-scale turbulence in practice [14].

III. MODEL OF UAV ENERGY CONSUMPTION WITH WIND

In this section, we introduce a novel model of the propulsion
energy consumption for the UAV-BS considering wind.

To derive a model suitable for the wind condition, let us
start with the model for the propulsion power consumed at
the speed Ṽ without wind, as introduced in [6].

P (Ṽ ) =P0

(
1 +

3Ṽ 2

V 2
tip

)
︸ ︷︷ ︸

blade profile

+Pi

√1 +
Ṽ 4

4v40
− Ṽ 2

2v20

1/2

︸ ︷︷ ︸
induced

+
1

2
d0ρsAṼ

3︸ ︷︷ ︸
parasite

, (5)
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where P0, Pi, d0, and s are the UAV hardware specific
constants (see [6]), ρ defines the air density, Vtip = Rω is
the tip speed of the rotor blade for the blade angular speed ω
and the rotor radius R, v0 represents the rotor speed induced
by forward flight, and A is the rotor disc area [6].

Note that this model is significantly extended towards a
consideration of the dynamics of the UAVs for practical
realizations in [7]. The models in both [6], [7] lead to similar
trends in the energy consumption with respect to the UAV
speed, see [7]. Moreover, none of these two models considers
wind and its impact on the energy, however, a generic principle
of an extension to include wind is analogical for both. As the
model from [6] is of much lower complexity than the model
in [7] and an integration of wind is easier to be illustrated
on the model in [6], we focus on this model, and we include
wind-related motion factors into this model in the following
way.

Generally, the wind force Fw actuating on an effective
surface Aw of the UAV is calculated as Fw = 1

2ρw
2Aw. The

effective surface Aw is the total surface hit by respective air
flow. Besides, the air resistance force acting in an opposite
direction of the flight is calculated as FV = 1

2ρV
2AV

actuating on effective surface AV.
We assume the wind velocity w⃗ = wxe⃗x + wye⃗y + wze⃗z

expressed by means of the orthogonal unit vectors e⃗x, e⃗y, e⃗z
representing the components of speed in each axis. By analogy,
we suppose that the speed of the UAV in the system related to a
ground-based observer is V⃗ = Vxe⃗x+Vye⃗y+Vze⃗z. Exploiting
the components of the wind velocity, we can compute the x
component of the wind force F⃗w as F⃗

w

x = 1
2ρwxwAwe⃗x. F⃗

w

y

and F⃗
w

z are computed analogically. The air resistance force F⃗V

consisting of F⃗V
x , F⃗

V
y , and F⃗V

z is computed correspondingly
from V⃗ and AV . The final force actuating on the UAV is a
sum of components of F⃗V and F⃗w, thus F⃗ = F⃗V + F⃗w. The
considered model is depicted in Fig. 1.

The total propulsion energy of the k-th UAV-BS Ek = Ep
k+

Eair
k is the sum of: i) the energy Ep

k corresponding to the k-
th UAV power required to maintain motion at the speed Vk
for the total flight time τ , and ii) dissipated energy Eair

k due
to the air flow related force F⃗k actuating on the surfaces of
the k-th UAV. Both components of the total propulsion energy
consumption are computed by time integration of the related
variables, i.e., Ep

k =
∫ τ

0
dtP (Vk), Eair

k =
∫ τ

0
dtF⃗k(t)·(ds⃗k(t)dt ),

where s⃗k(t) represents the pathway projection of k-th UAV in
space.

IV. PROBLEM FORMULATION

The objective is to minimize the propulsion energy con-
sumption of the UAV-BSs via a determination of the UAV-
BS trajectories. Due to real-world limitations imposed on
the trajectories, as explained in Section II, our goal is to
determine the circular trajectories including their centers;
F∗ = [f∗1 , f

∗
2 , . . . f

∗
K ] for all UAV-BSs and respective radii

r∗ = [r∗1 , r
∗
2 , ..., r

∗
K ]. The energy saving optimization problem

is, thus, defined as

Fig. 1. Model showing forces actuating on UAV-BS and speed vector,
trajectory, and backhaul/access channels of UAV-BS.

F∗, r∗ = argmin
F,r

K∑
k=1

Ek, (6)

s.t. (f∗k ) ∈ Ao, ∀k ∈ ⟨1,K⟩ (a)

f∗k,z ∈ ⟨zmin, zmax⟩, ∀k ∈ ⟨1,K⟩ (b)

r∗k ∈ ⟨rmin, rmax⟩, ∀k ∈ ⟨1,K⟩ (c)

Cm,k,n(dk(t)) ≥ (1− γ)C
′

m,k,n,∀k ∈ ⟨1,K⟩,
∀m ∈ ⟨1,M⟩,∀n ∈ ⟨1, N⟩. (d)

The constraint (a) defines the set of all possible locations
Ao in the area excluding buildings and obstacles, where the
presence of UAV-BSs is not allowed. The constraint (b) defines
the range of possible UAV-BS altitudes and the constraint (c)
defines the range of possible flight radii. The constraint (d)
ensures that the capacity Cm,k,n of the n-th UE associated
to the m-th SBS via the k-th UAV at the position dk at the
time t does not drop below (1−γ)C ′

m,k,n, where γ represents
the maximum relative allowed decrease in the capacity of UEs
with respect to the maximized capacity C

′

m,k,n of the n-th UE
neglecting the energy consumption. Hence, the constraint (d)
ensures the capacity degradation is negligible.

The optimization problem in (6) is NP-hard nonconvex
non-linear programming problem with embedded numerical
evaluation of partial differential equations represented by the
RANS with linear constraints on the variables using FVM.
The time complexity of the FVM is O(η log(η)), where η is
the mesh sensitivity characterizing the FVM environment. The
FVM approximates values by a time evaluation in ψ discrete
time steps, so the complexity becomes O(η log(η)ψ) [15].
The cost function in (6) is, thus, extremely computationally
expensive. Hence, we adopt machine learning to make the
solution feasible for practical applications.

V. PROPOSED SOLUTION FOR UAV-BS TRAJECTORY
DESIGN WITH WIND CONSIDERATION

In this section, we first determine the theoretical minimum
energy consumption. Then, we propose a solution to problem
(6). The solution is based on the ensemble learning adopted to
predict the sub-optimal energy efficient positions of the UAV-
BSs F and respective radii r. We take advantage of the wind
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Fig. 2. Ensemble learning approach to determine energy-efficient UAV-BS
trajectory. Three base learners (DNN, KNN, RF) are fed with capacity-
maximizing UAV-BSs’ positions F′ and wind information I⃗ at the RP.

distribution in the area and we search for a trajectory, where
a head wind is as low as possible, while a tail wind is as high
as possible to reduce the energy consumption.

To identify the theoretical minimum energy consumption
of UAV-BSs as defined in (6), we adopt the exhaustive search
deriving the optimum F∗ and r∗ by testing all possible options
of the UAV-BSs deployment (taking the constraints a, b, and
c into account) and selecting the one leading to the minimum
energy consumption while fulfilling the capacity constraint d.
For practical applications, the exhaustive search is not feasible
due to a huge computational complexity. Thus, we also solve
(6) as the prediction problem via ensemble learning, where F∗

and r∗ are used only as the targets in the training phase and
their computation online is not required.

The ensemble learning combines several base learners to
improve prediction performance in regression problems com-
pared to standalone predictors. We adopt the heterogeneous
set of learners Fo = f̂i, i = {1, 2, . . . ,H}, where H = 3, as
shown in Fig. 2. In the proposed solution, we use a deep neural
network (DNN) in combination with traditional random forests
(RF) and K-nearest neighbors (KNN) to build heterogeneous
ensemble enjoying the benefits of a lower computation cost
(shallow DNN and relatively low computing requirements of
RF and KNN) and higher diversity potentially leading to a
performance improvement [16]. Besides, the individual base
learners are characterized by a high sensitivity to the dataset
samples and even small changes in the training samples could
result in large changes in the predicted output in our problem.
However, when combined into the ensemble learning, the
resulting error is lower than that of the single classifier [16].

The feature vector for the ensemble learning is identical for
all three base learners and consists of F′, determined via any
existing algorithm for positioning of the UAV-BSs to maximize
the capacity, and wind information at the RP I⃗ = [ix, iy, iz]. At
the deployment stage, the ensemble output is implemented as
the average of base learners, i.e., [F, r] = 1

H

∑
i∈F f̂i[F

′, I⃗].
The hyperparameters of the base learners are identified us-

ing the grid-search optimization. The DNN predictor consists
of three hidden layers with 30, 40, and 40 neurons respectively,
employing ReLU activation function. RF reaches the highest
performance, when the number of estimators is set to 160 and
the maximum depth equals to 13. For the KNN, the number of
neighbors is set to the number of UEs N divided by a desired
number of UAV-BSs K.
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Fig. 3. Example of simulation setup with buildings (black squares), UEs
positions (orange dots), SBS positions (red triangles), reference point (RP),
capacity-max positions of UAV-BSs derived according to [17] (red crosses and
circle trajectory) and UAV-BSs positions computed by the proposed approach
(blue crosses and circle trajectory). The wind speed velocity is represented
by the green heatmap with zoomed detail encompassing average wind speed
vectors at given positions. Note that z-axis omitted for clarity.

VI. PERFORMANCE ANALYSIS

In our simulation setup, we consider a rectangular urban
area with a size of 1 × 1 km with 8 buildings of different
heights. We consider five SBSs located in random positions
on the buildings. The UEs are located randomly following the
Binomial point distribution. We consider B = 20 MHz and
spectral density of noise of −174 dBm/Hz. The transmission
powers of the SBS and the UAV-BS are equal to 46 dBm
and 30 dBm, respectively. Path loss model for line of sight
(LoS) channels is in line with [17]. For non-LoS channels,
an attenuation of walls/obstacles is added on the top of LoS
attenuation as in [17]. Fast fading components are generated
as exponentially distributed random variables with unit mean.
The simulation outputs are averaged out over 10 000 runs.

The exhaustive search to determine the minimum energy
consumption is performed in a discrete space with a step size
of 1 m. Finally, the capacity deterioration parameter introduced
in (6d) is set to γ = 0.03.

We consider the UAV-BSs represented by the DJI spreading
wings S900 model with the shape and HW characteristics
given in the specification manual1. The visualization of the
area considered in our simulation setup is given in Fig. 3.

We compare performance of our proposal with two baseline
schemes: i) exhaustive search (labeled as lower-bound) provid-
ing F∗ and r∗, and ii) state-of-the-art algorithm maximizing
capacity using DNN, as proposed in [17] (labeled as capacity-
max). Note that the capacity-max algorithm does not account
for the wind effect in the trajectory design.

As the performance metrics, we adopt the time averaged
propulsion energy consumption E = 1

τE
p
k and the average

sum capacity defined as time averaged sum of all UEs capac-
ities, i.e. C = 1

τ

∫ τ

0
dt
∑M

m=1

∑K
k=1

∑N
n=1(Cm,k,n(dk(t))).

Fig. 4a shows energy savings of 47% introduced by the
proposed approach with respect to the capacity-max solution
for the average wind speed |w⃗| = 10 ms−1 disregarding the
number of UEs deployed in the system. Such savings are
expected, since the capacity-max does not consider wind in
the trajectory design and, hence, the UAV-BSs copes with
potentially strong wind during flight. The standalone base

1http://dl.djicdn.com/downloads/s900/en/S900 User Manual v1.2 en.pdf
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learners show a slight performance degradation compared to
the proposed approach. Hence, a diversity among the base
learners results in a superior performance of the proposed en-
semble learning. In Fig. 4b, we plot the average sum capacity
vs. number of UEs deployed in the system for the average wind
speed |w⃗| = 10 ms−1. The proposed solution almost matches
the performance of the capacity-max algorithm (loss below
0.3%) disregarding the number of UEs. The standalone base
learners show a bit larger performance degradation of about
1.2%, 1.4%, and 2% for DNN, KNN, and RF, respectively.

In Fig. 5a, we show the average propulsion energy con-
sumption over the varying wind speed. The capacity-max
algorithm with no wind compensation is characterized by an
increasing energy consumption with the wind speed. Contrary,
our proposed approach and base learners take advantage of
the turbulent wind flows by adjusting the trajectories resulting
in a decreasing energy consumption with an increasing wind
speed. The reduced energy consumption for stronger wind is
the result of the optimized UAV-BS trajectory considering the
wind strength at different locations so that the UAV-BS follows
trajectory with a strong tail wind and weak head wind. The
energy saving by our proposal with respect to the state-of-the-
art capacity-max algorithm achieves 47% energy savings for
the wind speed |w⃗| = 10 ms−1. Besides, the proposal provides
almost identical performance as the computationally complex
lower-bound with difference always below 2%. The energy
consumption of the base learners is up to 8% worse compared
to the ensemble learning. Finally, in Fig. 5b, we observe the
proposed algorithm almost matches (difference below 0.1%)
the sum capacity of the lower-bound and capacity-max across
all investigated wind speed characteristics. The base learners
show a larger deterioration between 1.37 and 2.75%.

VII. CONCLUSIONS

We have introduced new analytical model of the UAV-BS
propulsion energy consumption taking the wind into account
in order to express the energy consumption at the presence
of the turbulent wind flows. Furthermore, we have proposed a
novel 3D positioning of UAV-BSs leveraging the wind flow
distribution to reduce the propulsion energy consumption.
The proposed solution is based on the ensemble learning
consisting of three base learners. The simulations show that
the proposal reduces the energy consumption significantly (up
to 47%) while the sum-capacity is deteriorated only negligibly
compared to the state-of-the-art work neglecting the wind.
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